The evolutionary distribution and structural organization of the homeobox-containing repeat D4Z4 indicates a functional role for the ancestral copy in the FSHD region.

نویسندگان

  • S T Winokur
  • U Bengtsson
  • J C Vargas
  • J J Wasmuth
  • M R Altherr
چکیده

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disease that has been linked to deletions within a tandem array of 3.2 kb repeats adjacent to the telomere of 4q. These repeats are also present in other locations in the human genome, including the short arms of all the acrocentric chromosomes. Here, we examine two models for the role of this repeat in FSHD. First, because of the extensive similarity between the 3.2 kb repeats on 4q and those adjacent to rDNA on the acrocentric chromosomes, we investigated whether the FSHD region on 4q is involved in sub-nuclear localization, specifically to the nucleolus. The results likely exclude any involvement of nucleolar localization in the development of FSHD. Second, we investigated a model that suggests that a functional gene may be buried within the tandem array of 3.2 kb repeats. Toward this end, we evaluated the evolutionary conservation of the repeat and a double homeodomain sequence within the repeat in a variety of primate species. The genomic organization of the 3.2 kb repeat in humans, great apes and lower primates identified the FSHD-associated repeat on chromosome 4q as the likely ancestral copy. The sequence of the rhesus monkey double homeodomain reveals significant sequence identity with the human 4q sequence. These results strongly suggest a functional role for a component of the FSHD-associated repeat.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromatin loop domain organization within the 4q35 locus in facioscapulohumeral dystrophy patients versus normal human myoblasts.

Fascioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder linked to partial deletion of integral numbers of a 3.3 kb polymorphic repeat, D4Z4, within the subtelomeric region of chromosome 4q. Although the relationship between deletions of D4Z4 and FSHD is well established, how this triggers the disease remains unclear. We have mapped the DNA loop domain cont...

متن کامل

Direct interplay between two candidate genes in FSHD muscular dystrophy

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common neuromuscular disorders. The major form of the disease (FSHD1) is linked to decrease in copy number of a 3.3-kb tandem repeated macrosatellite (D4Z4), located on chromosome 4q35. D4Z4 deletion alters chromatin structure of the locus leading to aberrant expression of nearby 4q35 genes. Given the high variability in disease o...

متن کامل

A Long ncRNA Links Copy Number Variation to a Polycomb/Trithorax Epigenetic Switch in FSHD Muscular Dystrophy

Repetitive sequences account for more than 50% of the human genome. Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease associated with reduction in the copy number of the D4Z4 repeat mapping to 4q35. By an unknown mechanism, D4Z4 deletion causes an epigenetic switch leading to de-repression of 4q35 genes. Here we show that the Polycomb group of epigenetic repressors ...

متن کامل

Correction: DNA Methylation Analysis of the Macrosatellite Repeat Associated with FSHD Muscular Dystrophy at Single Nucleotide Level

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common inherited diseases of the skeletal muscle. It is characterized by asymmetric muscle weakness and variable penetrance. FSHD is linked to a reduction in copy number of the D4Z4 3.3 kb macrosatellite repeat, located in 4q35. This causes the epigenetic de-repression of FSHD candidate genes leading to disease. Nevertheless, the ...

متن کامل

FSHD Myotubes with Different Phenotypes Exhibit Distinct Proteomes

Facioscapulohumeral muscular dystrophy (FSHD) is a progressive muscle disorder linked to a contraction of the D4Z4 repeat array in the 4q35 subtelomeric region. This deletion induces epigenetic modifications that affect the expression of several genes located in the vicinity. In each D4Z4 element, we identified the double homeobox 4 (DUX4) gene. DUX4 expresses a transcription factor that plays ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 5 10  شماره 

صفحات  -

تاریخ انتشار 1996